Learning BOLD response in fMRI by reservoir computing

Paolo Avesani, Hananel Hazann, Ester Koilis, Larry Manevitz, Diego Sona

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected BOLD response related to a set of stimuli. Differently from standard brain mapping techniques, where voxel relevance is assessed by fitting an hemodynamic response function, we argue that relevant voxels can be filtered according to the prediction accuracy of a learning model. In this work we present a computational architecture based on reservoir computing which combines a Liquid State Machine with a Multi-Layer Perceptron. An empirical analysis on synthetic data shows how the learning process can be robust with respect to noise artificially added to the signal. A similar investigation on real fMRI data provides a prediction of BOLD response whose accuracy allows for discriminating between relevant and irrelevant voxels.

Original languageEnglish
Title of host publicationProceedings - International Workshop on Pattern Recognition in NeuroImaging, PRNI 2011
Pages57-60
Number of pages4
DOIs
StatePublished - 2011
Externally publishedYes
EventInternational Workshop on Pattern Recognition in NeuroImaging, PRNI 2011 - Seoul, Korea, Republic of
Duration: 16 May 201118 May 2011

Publication series

NameProceedings - International Workshop on Pattern Recognition in NeuroImaging, PRNI 2011

Conference

ConferenceInternational Workshop on Pattern Recognition in NeuroImaging, PRNI 2011
Country/TerritoryKorea, Republic of
CitySeoul
Period16/05/1118/05/11

Fingerprint

Dive into the research topics of 'Learning BOLD response in fMRI by reservoir computing'. Together they form a unique fingerprint.

Cite this