Learning and Exploiting Progress States in Greedy Best-First Search

Patrick Ferber, Liat Cohen, Jendrik Seipp, Thomas Keller

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Previous work introduced the concept of progress states. After expanding a progress state, a greedy best-first search (GBFS) will only expand states with lower heuristic values. Current methods can identify progress states only for a single task and only after a solution for the task has been found. We introduce a novel approach that learns a description logic formula characterizing all progress states in a classical planning domain. Using the learned formulas in a GBFS to break ties in favor of progress states often significantly reduces the search effort.

Original languageEnglish
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
Pages4740-4746
Number of pages7
ISBN (Electronic)9781956792003
StatePublished - 2022
Externally publishedYes
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: 23 Jul 202229 Jul 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period23/07/2229/07/22

Fingerprint

Dive into the research topics of 'Learning and Exploiting Progress States in Greedy Best-First Search'. Together they form a unique fingerprint.

Cite this