TY - JOUR
T1 - Laser-reduced graphene-oxide/ferrocene
T2 - A 3-D redox-active composite for supercapacitor electrodes
AU - Borenstein, Arie
AU - Strauss, Volker
AU - Kowal, Matthew D.
AU - Yoonessi, Mitra
AU - Muni, Mit
AU - Anderson, Mackenzie
AU - Kaner, Richard B.
N1 - Publisher Copyright:
© 2018 The Royal Society of Chemistry.
PY - 2018
Y1 - 2018
N2 - Supercapacitors are energy storage and conversion devices that display high power. In order to increase energy density, redox-active materials can be incorporated into the carbonaceous electrode(s). Although in recent years many studies have offered different redox-active candidates and composite methods, there is a constant search for an effective, easily producible and stable composite material. Here, we present a graphene/ferrocene composition as a redox active 3-D supercapacitor electrode material. The combination of highly reversible, conductive and strongly attached ferrocene with the high surface area and open porous structure of graphene results in high-power, high-energy density supercapacitors. The graphene scaffold is converted from graphene-oxide (GO) by laser irradiation, a facile, fast and eco-friendly method. The ferrocene is chemically bonded to the graphene by two different approaches that take advantage of the strong and stable pi-pi interactions between the carbon and the aromatic ligands. The excellent bonding between the components results in low internal resistance and high reversibility of the redox reaction. The composite demonstrated a 205% increase in specific capacitance from 87 F g-1 for pure laser reduced graphene oxide to 178 F g-1 for the composite with ferrocene. This is equivalent to an energy density of 6.19 W h kg-1 while maintaining a power density of 26.0 kW kg-1.
AB - Supercapacitors are energy storage and conversion devices that display high power. In order to increase energy density, redox-active materials can be incorporated into the carbonaceous electrode(s). Although in recent years many studies have offered different redox-active candidates and composite methods, there is a constant search for an effective, easily producible and stable composite material. Here, we present a graphene/ferrocene composition as a redox active 3-D supercapacitor electrode material. The combination of highly reversible, conductive and strongly attached ferrocene with the high surface area and open porous structure of graphene results in high-power, high-energy density supercapacitors. The graphene scaffold is converted from graphene-oxide (GO) by laser irradiation, a facile, fast and eco-friendly method. The ferrocene is chemically bonded to the graphene by two different approaches that take advantage of the strong and stable pi-pi interactions between the carbon and the aromatic ligands. The excellent bonding between the components results in low internal resistance and high reversibility of the redox reaction. The composite demonstrated a 205% increase in specific capacitance from 87 F g-1 for pure laser reduced graphene oxide to 178 F g-1 for the composite with ferrocene. This is equivalent to an energy density of 6.19 W h kg-1 while maintaining a power density of 26.0 kW kg-1.
UR - http://www.scopus.com/inward/record.url?scp=85055472379&partnerID=8YFLogxK
U2 - 10.1039/c8ta08249a
DO - 10.1039/c8ta08249a
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85055472379
SN - 2050-7488
VL - 6
SP - 20463
EP - 20472
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 41
ER -