TY - JOUR
T1 - Large-width machine learning algorithm
AU - Anthony, Martin
AU - Ratsaby, Joel
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - We introduce an algorithm, called Large Width (LW), that produces a multi-category classifier (defined on a distance space) with the property that the classifier has a large ‘sample width.’ (Width is a notion similar to classification margin.) LW is an incremental instance-based (also known as ‘lazy’) learning algorithm. Given a sample of labeled and unlabeled examples, it iteratively picks the next unlabeled example and classifies it while maintaining a large distance between each labeled example and its nearest-unlike prototype. (A prototype is either a labeled example or an unlabeled example which has already been classified.) Thus, LW gives a higher priority to unlabeled points whose classification decision ‘interferes’ less with the labeled sample. On a collection UCI benchmark datasets, the LW algorithm ranks at the top when compared to 11 instance-based learning algorithms (or configurations). When compared to the best candidate from instance-based learners, MLP, SVM, decision tree learner (C4.5) and Naive Bayes, LW is ranked at second place after only MLP which comes at first place by a single extra win against LW. The LW algorithm can be implemented in parallel distributed processing to yield a high speedup factor and is suitable for any distance space, with a distance function which need not necessarily satisfy the conditions of a metric.
AB - We introduce an algorithm, called Large Width (LW), that produces a multi-category classifier (defined on a distance space) with the property that the classifier has a large ‘sample width.’ (Width is a notion similar to classification margin.) LW is an incremental instance-based (also known as ‘lazy’) learning algorithm. Given a sample of labeled and unlabeled examples, it iteratively picks the next unlabeled example and classifies it while maintaining a large distance between each labeled example and its nearest-unlike prototype. (A prototype is either a labeled example or an unlabeled example which has already been classified.) Thus, LW gives a higher priority to unlabeled points whose classification decision ‘interferes’ less with the labeled sample. On a collection UCI benchmark datasets, the LW algorithm ranks at the top when compared to 11 instance-based learning algorithms (or configurations). When compared to the best candidate from instance-based learners, MLP, SVM, decision tree learner (C4.5) and Naive Bayes, LW is ranked at second place after only MLP which comes at first place by a single extra win against LW. The LW algorithm can be implemented in parallel distributed processing to yield a high speedup factor and is suitable for any distance space, with a distance function which need not necessarily satisfy the conditions of a metric.
KW - Large-margin learning
KW - Lazy learning
KW - Nonparametric classification
KW - k-Nearest neighbor
UR - http://www.scopus.com/inward/record.url?scp=85089035114&partnerID=8YFLogxK
U2 - 10.1007/s13748-020-00212-4
DO - 10.1007/s13748-020-00212-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85089035114
SN - 2192-6352
VL - 9
SP - 275
EP - 285
JO - Progress in Artificial Intelligence
JF - Progress in Artificial Intelligence
IS - 3
ER -