Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide

Philip Nathaniel Immanuel, Song Jeng Huang, Viktor Danchuk, Anastasiya Sedova, Johnathan Prilusky, Achiad Goldreich, Hila Shalom, Albina Musin, Lena Yadgarov

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Halide perovskites-based solar cells are drawing significant attention due to their high efficiency, versatility, and affordable processing. Hence, halide perovskite solar cells have great potential to be commercialized. However, the halide perovskites (HPs) are not stable in an ambient environment. Thus, the instability of the perovskite is an essential issue that needs to be addressed to allow its rapid commercialization. In this work, WS2 nanoparticles (NPs) are successfully implemented on methylammonium lead iodide (MAPbI3) based halide perovskite solar cells. The main role of the WS2 NPs in the halide perovskite solar cells is as stabilizing agent. Here the WS2 NPs act as heat dissipater and charge transfer channels, thus allowing an effective charge separation. The electron extraction by the WS2 NPs from the adjacent MAPbI3 is efficient and results in a higher current density. In addition, the structural analysis of the MAPbI3 films indicates that the WS2 NPs act as nucleation sites, thus promoting the formation of larger grains of MAPbI3. Remarkably, the absorption and shelf life of the MAPbI3 layers have increased by 1.7 and 4.5-fold, respectively. Our results demonstrate a significant improvement in stability and solar cell characteristics. This paves the way for the long-term stabilization of HPs solar cells by the implementation of WS2 NPs.

Original languageEnglish
Article number4454
Issue number24
StatePublished - Dec 2022


  • halide perovskite
  • methylammonium lead iodide
  • renewable energy
  • solar cells
  • transition metal dichalcogenides


Dive into the research topics of 'Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide'. Together they form a unique fingerprint.

Cite this