Abstract
The probability density function (pdf) valid for the Gaussian case is often applied for describing the convolutional noise pdf in the blind adaptive deconvolution problem, although it is known that it can be applied only at the latter stages of the deconvolution process, where the convolutional noise pdf tends to be approximately Gaussian. Recently, the deconvolutional noise pdf was approximated with the Edgeworth Expansion and with the Maximum Entropy density function for the 16 Quadrature Amplitude Modulation (QAM) input but no equalization performance improvement was seen for the hard channel case with the equalization algorithm based on the Maximum Entropy density function approach for the convolutional noise pdf compared with the original Maximum Entropy algorithm, while for the Edgeworth Expansion approximation technique, additional predefined parameters were needed in the algorithm. In this paper, the Generalized Gaussian density (GGD) function and the Edgeworth Expansion are applied for approximating the convolutional noise pdf for the 16 QAM input case, with no need for additional predefined parameters in the obtained equalization method. Simulation results indicate that improved equalization performance is obtained from the convergence time point of view of approximately 15,000 symbols for the hard channel case with our new proposed equalization method based on the new model for the convolutional noise pdf compared to the original Maximum Entropy algorithm. By convergence time, we mean the number of symbols required to reach a residual inter-symbol-interference (ISI) for which reliable decisions can be made on the equalized output sequence.
Original language | English |
---|---|
Article number | 547 |
Journal | Entropy |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - May 2021 |
Keywords
- Blind equalization
- Deconvolution
- Edgeworth expansion
- Generalized Gaussian Distribution (GGD)
- Laplace integral
- Maximum entropy