TY - JOUR
T1 - ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION
AU - Amelino-Camelia, Giovanni
AU - Guetta, D.
AU - Piran, Tsvi
N1 - Publisher Copyright:
© 2015. The American Astronomical Society. All rights reserved.
PY - 2015/6/20
Y1 - 2015/6/20
N2 - The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
AB - The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
KW - astroparticle physics
KW - gamma-ray burst: general
KW - neutrinos
UR - http://www.scopus.com/inward/record.url?scp=84933575080&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/806/2/269
DO - 10.1088/0004-637X/806/2/269
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
SN - 0004-637X
VL - 806
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 269
ER -