TY - JOUR
T1 - Hot-injected ligand-free SnTe nanoparticles
T2 - a cost-effective route to flexible symmetric supercapacitors
AU - Jadhav, Chandradip D.
AU - Patil, Girish P.
AU - Lyssenko, Svetlana
AU - Minnes, Refael
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - In this study, we report a novel approach for synthesizing tin telluride (SnTe) nanostructures using a hot injection method with water as the solvent, a significant departure from traditional organic solvents. This water-based synthesis not only aligns with green chemistry principles but also offers superior control over nucleation and growth, leading to SnTe nanostructures with well-defined morphologies and sizes. These nanostructures were thoroughly characterized, confirming their crystal structure, surface composition, and morphology. Electrochemical three-electrode supercapacitive testing revealed that the SnTe-based supercapacitors exhibit a specific capacitance of 602 F g−1 with excellent rate capability and a capacitance retention of 89% after 5000 cycles. Furthermore, we developed a flexible all-solid-state symmetric supercapacitor with SnTe nanoparticles and PVA-NaClO4 gel polymer electrolyte, which achieved an energy density of 17.8 Wh kg−1 and a power density of up to 3.1 kW kg−1, surpassing previously reported SnTe-based devices. Additionally, the supercapacitor demonstrated excellent cycling stability, retaining 96.56% of its initial capacitance after 5000 charge-discharge cycles at 4 A g−1 with a coulombic efficiency of 95.76%. This research demonstrates the potential of SnTe as a high-performance electrode material for supercapacitors and underscores the significance of our novel, environmentally friendly synthesis approach in advancing energy storage technologies.
AB - In this study, we report a novel approach for synthesizing tin telluride (SnTe) nanostructures using a hot injection method with water as the solvent, a significant departure from traditional organic solvents. This water-based synthesis not only aligns with green chemistry principles but also offers superior control over nucleation and growth, leading to SnTe nanostructures with well-defined morphologies and sizes. These nanostructures were thoroughly characterized, confirming their crystal structure, surface composition, and morphology. Electrochemical three-electrode supercapacitive testing revealed that the SnTe-based supercapacitors exhibit a specific capacitance of 602 F g−1 with excellent rate capability and a capacitance retention of 89% after 5000 cycles. Furthermore, we developed a flexible all-solid-state symmetric supercapacitor with SnTe nanoparticles and PVA-NaClO4 gel polymer electrolyte, which achieved an energy density of 17.8 Wh kg−1 and a power density of up to 3.1 kW kg−1, surpassing previously reported SnTe-based devices. Additionally, the supercapacitor demonstrated excellent cycling stability, retaining 96.56% of its initial capacitance after 5000 charge-discharge cycles at 4 A g−1 with a coulombic efficiency of 95.76%. This research demonstrates the potential of SnTe as a high-performance electrode material for supercapacitors and underscores the significance of our novel, environmentally friendly synthesis approach in advancing energy storage technologies.
UR - http://www.scopus.com/inward/record.url?scp=85212568022&partnerID=8YFLogxK
U2 - 10.1039/d4ta07111e
DO - 10.1039/d4ta07111e
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85212568022
SN - 2050-7488
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
ER -