TY - JOUR
T1 - Histologic and ultrastructural studies on the mineralization process in hypophosphatasia
AU - Ornoy, A.
AU - Adomian, G. E.
AU - Rimoin, D. L.
PY - 1985
Y1 - 1985
N2 - Chondroosseous tissue from six infants with infantile hypophosphatasia and six control infants were studied by light, transmission, and scanning electron microscopy. Alkaline phosphatase histochemical reaction of the growth plate was studied in two infants and was greatly reduced when compared to two control infants. Hypertrophic chondrocytes were increased in number with persisting cartilage islets in the metaphysis. In five of the six cases studied, chondrocytes and intercartilagenous intercellular chondroid matrix appeared ultrastructurally normal. Matrix vesicle distribution was similar to that of control subjects, but they were associated with few mineral crystals. In two infants, the matrix vesicles were alkaline phosphatase nonreactive. In the calcifying zone of the growth plate and in the newly formed metaphyseal trabecular bone, cartilagenous calcospherites often were small and the orientation of crystals was nonradial when compared to that of control infants. The mineralization of diaphyseal bone appeared normal. It seems that matrix vesicles are present in hypophosphatasia and that the impaired mineralization of cartilage is due primarily to the deficiency of alkaline phosphatase. In spite of the lack of alkaline phosphatase, secondary mineralization of bone which is not mediated by matrix vesicles was normal.
AB - Chondroosseous tissue from six infants with infantile hypophosphatasia and six control infants were studied by light, transmission, and scanning electron microscopy. Alkaline phosphatase histochemical reaction of the growth plate was studied in two infants and was greatly reduced when compared to two control infants. Hypertrophic chondrocytes were increased in number with persisting cartilage islets in the metaphysis. In five of the six cases studied, chondrocytes and intercartilagenous intercellular chondroid matrix appeared ultrastructurally normal. Matrix vesicle distribution was similar to that of control subjects, but they were associated with few mineral crystals. In two infants, the matrix vesicles were alkaline phosphatase nonreactive. In the calcifying zone of the growth plate and in the newly formed metaphyseal trabecular bone, cartilagenous calcospherites often were small and the orientation of crystals was nonradial when compared to that of control infants. The mineralization of diaphyseal bone appeared normal. It seems that matrix vesicles are present in hypophosphatasia and that the impaired mineralization of cartilage is due primarily to the deficiency of alkaline phosphatase. In spite of the lack of alkaline phosphatase, secondary mineralization of bone which is not mediated by matrix vesicles was normal.
UR - http://www.scopus.com/inward/record.url?scp=0022381584&partnerID=8YFLogxK
U2 - 10.1002/ajmg.1320220410
DO - 10.1002/ajmg.1320220410
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 4073124
AN - SCOPUS:0022381584
SN - 0148-7299
VL - 22
SP - 743
EP - 758
JO - American Journal of Medical Genetics
JF - American Journal of Medical Genetics
IS - 4
ER -