Abstract
Entangled photon states attract tremendous interest as the most vivid manifestation of nonlocality of quantum mechanics and also for emerging applications in quantum information. Here we propose a mechanism of generation of polarization-entangled photons, which is based on the nonlinear optical interaction (four-wave mixing) in graphene placed in a magnetic field. Unique properties of quantized electron states in a magnetized graphene and optical selection rules near the Dirac point give rise to a giant optical nonlinearity and a high rate of photon production in the mid- or far-infrared range. A similar mechanism of photon entanglement may exist in topological insulators where the surface states have a Dirac-cone dispersion and demonstrate similar properties of magneto-optical absorption.
Original language | English |
---|---|
Article number | 077404 |
Journal | Physical Review Letters |
Volume | 110 |
Issue number | 7 |
DOIs | |
State | Published - 14 Feb 2013 |
Externally published | Yes |