TY - GEN
T1 - Gaussian process regression for out-of-sample extension
AU - Barkan, Oren
AU - Weill, Jonathan
AU - Averbuch, Amir
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/11/8
Y1 - 2016/11/8
N2 - Manifold learning methods are useful for high dimensional data analysis. Many of the existing methods produce a low dimensional representation that attempts to describe the intrinsic geometric structure of the original data. Typically, this process is computationally expensive and the produced embedding is limited to the training data. In many real life scenarios, the ability to produce embedding of unseen samples is essential. In this paper we propose a Bayesian non-parametric approach for out-of-sample extension. The method is based on Gaussian Process Regression and independent of the manifold learning algorithm. Additionally, the method naturally provides a measure for the degree of abnormality for a newly arrived data point that did not participate in the training process. We derive the mathematical connection between the proposed method and the Nystrom extension and show that the latter is a special case of the former. We present extensive experimental results that demonstrate the performance of the proposed method and compare it to other existing out-of-sample extension methods.
AB - Manifold learning methods are useful for high dimensional data analysis. Many of the existing methods produce a low dimensional representation that attempts to describe the intrinsic geometric structure of the original data. Typically, this process is computationally expensive and the produced embedding is limited to the training data. In many real life scenarios, the ability to produce embedding of unseen samples is essential. In this paper we propose a Bayesian non-parametric approach for out-of-sample extension. The method is based on Gaussian Process Regression and independent of the manifold learning algorithm. Additionally, the method naturally provides a measure for the degree of abnormality for a newly arrived data point that did not participate in the training process. We derive the mathematical connection between the proposed method and the Nystrom extension and show that the latter is a special case of the former. We present extensive experimental results that demonstrate the performance of the proposed method and compare it to other existing out-of-sample extension methods.
UR - http://www.scopus.com/inward/record.url?scp=85002152476&partnerID=8YFLogxK
U2 - 10.1109/MLSP.2016.7738832
DO - 10.1109/MLSP.2016.7738832
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85002152476
T3 - IEEE International Workshop on Machine Learning for Signal Processing, MLSP
BT - 2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
A2 - Diamantaras, Kostas
A2 - Uncini, Aurelio
A2 - Palmieri, Francesco A. N.
A2 - Larsen, Jan
PB - IEEE Computer Society
T2 - 26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
Y2 - 13 September 2016 through 16 September 2016
ER -