Floquet theory and stability for a class of first order differential equations with delays

Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn

Research output: Contribution to journalArticlepeer-review

Abstract

A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov-Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.

Original languageEnglish
JournalGeorgian Mathematical Journal
DOIs
StateAccepted/In press - 2024

Keywords

  • Floquet theory
  • comparison theorems
  • delay differential equations
  • exponential stability
  • periodic coefficients and delays

Fingerprint

Dive into the research topics of 'Floquet theory and stability for a class of first order differential equations with delays'. Together they form a unique fingerprint.

Cite this