Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models

Noa Ohana-Levi, Sarel Munitz, Alon Ben-Gal, Yishai Netzer

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Evapotranspiration (ETc) levels are influenced by the area of plant canopy, atmospheric conditions, plant physiology, and soil-water relations, which are all subjected to changes throughout the growing season. Understanding temporal trends, variability, and interactions between ETc and its governing factors is valuable for modeling, predictions and vineyard water management. Our research objective was to quantify temporal patterns of ETc of ‘Cabernet Sauvignon’ grapevines and affecting meteorological (temperature, relative humidity, radiation, wind speed) and vegetative (leaf area) factors during the growing season and within five phenological growth stages (0–4). Temporal variability of ETc was modeled using five consecutive seasons of lysimeter time-series data, capturing the non-stationary nature of the data in terms of seasonality, trends and within-seasonal patterns. The temporal dependence of ETc and its drivers throughout growing seasons was evaluated using the Box-Pierce test, autocorrelation function (ACF) and partial ACF. Patterns of the relations between ETc and its covariates were quantified using multiple nonlinear regression, the generalized additive model (GAM), at the full growing season scale and for each phenological stage. Further examination on the effect of leaf area on ETc was conducted using area under curve calculations and ETc-leaf area ratio. The results demonstrate temporal autocorrelation structure of the data, supporting the incorporation of time variables in the GAM. Each phenological stage had a unique composition of relative importance of the covariates, with variation in ETc being largely explained by time variables. Ordinarily, ETc in early season (Stage 0) and at late season (Stage 3, approaching harvest) was mostly influenced by leaf area dynamics, while in mid-season it was highly affected by temperature. The GAM enabled quantification of within-seasonal patterns of interrelations between covariates and their effects on ETc, and revealed inter-seasonal variability due to dissimilar meteorological conditions. Agro-technical management affects canopy dimensions and structure, thus influencing ETc-leaf area relations.

Original languageEnglish
Article number105808
JournalAgricultural Water Management
StatePublished - 20 Feb 2020


  • Drainage lysimeters
  • Leaf area index
  • Multivariable non-linear regression
  • Phenological growth stages
  • Temporal autocorrelation
  • Time-series analysis


Dive into the research topics of 'Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models'. Together they form a unique fingerprint.

Cite this