Environmental benefit of two-layer steel fibered high-performance concrete beams

Research output: Contribution to journalArticlepeer-review

Abstract

This study evaluated Life-Cycle Assessment (LCA) of two different designs of high-performance concrete beam: (1) a single-layer beam (SLB) that consisted of steel fibered high-strength concrete in both the compression and tensile zones and (2) a two-layer beam (TLB) that consisted of steel fibered high-strength concrete and normal-strength concrete in the compression and tensile zones, respectively. The SLB and steel fibered high-strength concrete layer of the TLB were of the same concrete class C70/85. LCAs of the SLB and TLB were conducted using the ReCiPe2016 midpoint and endpoint-single-score methods. The difference between the two endpoint-single-score results was evaluated using a two-stage nested analysis of variance. The ReCiPe2016 midpoint results showed that replacing the SLB with the TLB reduces the environmental impact of global warming potential, terrestrial ecotoxicity, water consumption, and scarcity of fossil resources by 15%, 17%, 11%, and 17%, respec-tively. The ReCiPe2016 endpoint-single-score results showed that the environmental damage from the TLB compared to the SLB was statistically reduced (p = 0.0256). Therefore, considering two different designs of steel fibered high-strength concrete beams, the TLB design was found environmentally preferable to SLB design on both, midpoint and endpoint-single-score evaluations.

Original languageEnglish
Pages (from-to)237-250
Number of pages14
JournalJournal of Green Building
Volume16
Issue number3
DOIs
StatePublished - 1 Jun 2021

Keywords

  • Life-cycle assessment (LCA)
  • Steel fibered high-strength concrete
  • Two-layer beam design method
  • Two-stage nested ANOVA

Fingerprint

Dive into the research topics of 'Environmental benefit of two-layer steel fibered high-performance concrete beams'. Together they form a unique fingerprint.

Cite this