TY - JOUR
T1 - Electron mediation and photocurrent enhancement in dunalliela salina driven bio-photo electrochemical cells
AU - Shlosberg, Yaniv
AU - Tóth, Tünde N.
AU - Eichenbaum, Benjamin
AU - Keysar, Lee
AU - Schuster, Gadi
AU - Adir, Noam
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10
Y1 - 2021/10
N2 - In recent years, finding alternatives for fossil fuels has become a major concern. One promising solution is microorganism-based bio-photo electrochemical cells (BPECs) that utilize photosynthetic solar energy conversion as an energy source while absorbing CO2 from the atmosphere. It was previously reported that in cyanobacterial-based BPECs, the major endogenous electron mediator that can transfer electrons from the thylakoid membrane photosynthetic complexes and external anodes is NADPH. However, the question of whether the same electron transfer mechanism is also valid for live eukaryotic microalgae, in which NADPH must cross both the chloroplast outer membrane and the cell wall to be secreted from the cell has remained elusive. In this work, we show that NADPH is also the major endogenous electron mediator in the microalgae Dunalliela salina (Ds). We show that the ability of Ds to tolerate high salinity enables the production of a photocurrent that is 5–6 times greater than previously reported for freshwater cyanobacterial-based BPECs in the presence or absence of exogenous electron mediators. Additionally, we show that the electron mediator Vitamin B1 can also function as an electron mediator enhancing photocurrent production. Finally, we show that the addition of both FeCN and NADP+ to Ds has a synergistic effect enhancing the photocurrent beyond the effect of adding each mediator separately.
AB - In recent years, finding alternatives for fossil fuels has become a major concern. One promising solution is microorganism-based bio-photo electrochemical cells (BPECs) that utilize photosynthetic solar energy conversion as an energy source while absorbing CO2 from the atmosphere. It was previously reported that in cyanobacterial-based BPECs, the major endogenous electron mediator that can transfer electrons from the thylakoid membrane photosynthetic complexes and external anodes is NADPH. However, the question of whether the same electron transfer mechanism is also valid for live eukaryotic microalgae, in which NADPH must cross both the chloroplast outer membrane and the cell wall to be secreted from the cell has remained elusive. In this work, we show that NADPH is also the major endogenous electron mediator in the microalgae Dunalliela salina (Ds). We show that the ability of Ds to tolerate high salinity enables the production of a photocurrent that is 5–6 times greater than previously reported for freshwater cyanobacterial-based BPECs in the presence or absence of exogenous electron mediators. Additionally, we show that the electron mediator Vitamin B1 can also function as an electron mediator enhancing photocurrent production. Finally, we show that the addition of both FeCN and NADP+ to Ds has a synergistic effect enhancing the photocurrent beyond the effect of adding each mediator separately.
KW - Electrochemistry
KW - Green algae
KW - Mediated electron transfer
KW - NADPH
KW - Photosynthesis
KW - Solar energy conversion
KW - Vitamin B1
UR - http://www.scopus.com/inward/record.url?scp=85116738819&partnerID=8YFLogxK
U2 - 10.3390/catal11101220
DO - 10.3390/catal11101220
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85116738819
SN - 2073-4344
VL - 11
JO - Catalysts
JF - Catalysts
IS - 10
M1 - 1220
ER -