Effects of atmospheric plasma corona discharges on soil bacteria viability

Yulia Lazra, Irina Dubrovin, Victor Multanen, Edward Bormashenko, Yelena Bormashenko, Rivka Cahan

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Crop contamination by soil-borne pathogenic microorganisms often leads to serious infection outbreaks. Plant protection requires disinfection of agricultural lands. The chemical and the physical disinfection procedures have several disadvantages, including an irreversible change in the soil ecosystem. Plasma, the “fourth state of matter” is defined as an ionized gas containing an equal number of negatively and positively charged particles. Cold-plasma technology with air or oxygen as the working gas generates reactive oxygen species, which are found to efficiently eradicate bacteria. In this study, we examined the effect of atmospheric plasma corona discharges on soil bacteria viability. Soil that was exposed to plasma for 60 s resulted in bacterial reduction by two orders of magnitude, from 1.1 × 105 to 2.3 × 103 cells g−1 soil. Exposure for a longer period of 5 min did not lead to further significant reduction in bacterial concentration (a final reduction of only 2.5 orders of magnitude). The bacterial viability was evaluated using a colorimetric assay based on the bacterial hydrogenases immediately after exposure and at selected times during 24 h. The result showed no recovery in the bacterial viability. Plasma discharged directly on bacteria that were isolated from the soil resulted in a reduction by four orders of magnitude in the bacterial concentration compared to untreated isolated bacteria: 2.6 × 10−3 and 1.7 × 10−7, respectively. The plasma-resistant bacteria were found to be related to the taxonomic phylum Firmicutes (98.5%) and comprised the taxonomic orders Bacillales (95%) and Clostridiales (2%). To our knowledge, this is the first study of soil bacteria eradication using plasma corona discharges.

Original languageEnglish
Article number704
Issue number5
StatePublished - May 2020


  • Bacteria
  • Bacterial relative distribution
  • Corona plasma discharge
  • Soil disinfection


Dive into the research topics of 'Effects of atmospheric plasma corona discharges on soil bacteria viability'. Together they form a unique fingerprint.

Cite this