TY - JOUR
T1 - Edgeworth Expansion Based Model for the Convolutional Noise pdf
AU - Rivlin, Yonatan
AU - Pinchas, Monika
N1 - Publisher Copyright:
© 2014 Yonatan Rivlin and Monika Pinchas.
PY - 2014
Y1 - 2014
N2 - Recently, the Edgeworth expansion up to order 4 was used to represent the convolutional noise probability density function (pdf) in the conditional expectation calculations where the source pdf was modeled with the maximum entropy density approximation technique. However, the applied Lagrange multipliers were not the appropriate ones for the chosen model for the convolutional noise pdf. In this paper we use the Edgeworth expansion up to order 4 and up to order 6 to model the convolutional noise pdf. We derive the appropriate Lagrange multipliers, thus obtaining new closed-form approximated expressions for the conditional expectation and mean square error (MSE) as a byproduct. Simulation results indicate hardly any equalization improvement with Edgeworth expansion up to order 4 when using optimal Lagrange multipliers over a nonoptimal set. In addition, there is no justification for using the Edgeworth expansion up to order 6 over the Edgeworth expansion up to order 4 for the 16QAM and easy channel case. However, Edgeworth expansion up to order 6 leads to improved equalization performance compared to the Edgeworth expansion up to order 4 for the 16QAM and hard channel case as well as for the case where the 64QAM is sent via an easy channel.
AB - Recently, the Edgeworth expansion up to order 4 was used to represent the convolutional noise probability density function (pdf) in the conditional expectation calculations where the source pdf was modeled with the maximum entropy density approximation technique. However, the applied Lagrange multipliers were not the appropriate ones for the chosen model for the convolutional noise pdf. In this paper we use the Edgeworth expansion up to order 4 and up to order 6 to model the convolutional noise pdf. We derive the appropriate Lagrange multipliers, thus obtaining new closed-form approximated expressions for the conditional expectation and mean square error (MSE) as a byproduct. Simulation results indicate hardly any equalization improvement with Edgeworth expansion up to order 4 when using optimal Lagrange multipliers over a nonoptimal set. In addition, there is no justification for using the Edgeworth expansion up to order 6 over the Edgeworth expansion up to order 4 for the 16QAM and easy channel case. However, Edgeworth expansion up to order 6 leads to improved equalization performance compared to the Edgeworth expansion up to order 4 for the 16QAM and hard channel case as well as for the case where the 64QAM is sent via an easy channel.
UR - http://www.scopus.com/inward/record.url?scp=84934906636&partnerID=8YFLogxK
U2 - 10.1155/2014/951927
DO - 10.1155/2014/951927
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84934906636
SN - 1024-123X
VL - 2014
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 951927
ER -