Dual-tracked mobile robot for motion in challenging terrains

Shraga Shoval, Amir Shapiro

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In this paper we present a novel design for a dual-tracked mobile robot. The robot is designed for safe, stable, and reliable motion in challenging terrains, tunnels, and confined spaces. It consists of two tracked platforms connected with a semipassive mechanism. Sensors attached to the connecting mechanism provide redundant localization data that improve the vehicle's autonomous dead reckoning. Each tracked platform mechanically backs up the other platform, resulting in a more robust and reliable operation. The load share between the platforms enables a high payload-to-weight ratio even on soft and slippery terrains. The robot's configurations make it suitable for motion in confined spaces such as underground tunnels, collapsed structures, pipes, and caves. The paper presents the mechanical design of the robot, its kinematic model, stability analysis, and a motion planner. Experimental results conducted on prototype models in various types of environments verify the robot capabilities to operate successfully on challenging terrains. The dual-tracked robot is capable of climbing slopes 50% steeper than a single robot can. Moreover, the improved odometry system shows high accuracy with 2% error of the total travel distance.

Original languageEnglish
Pages (from-to)769-791
Number of pages23
JournalJournal of Field Robotics
Volume28
Issue number5
DOIs
StatePublished - Sep 2011

Fingerprint

Dive into the research topics of 'Dual-tracked mobile robot for motion in challenging terrains'. Together they form a unique fingerprint.

Cite this