Dual Role of Silicon-based Matrices in Electron Exchange Matrices for Waste Treatment

Noy Cohen, Dror Shamir, Haya Kornweitz, Yael Albo, Ariela Burg

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Para chloro aniline (PCA) is a common toxic pollutant found in pharmaceutical wastewater. Our study suggests a novel PCA treatment method based on a heterogeneous advanced oxidation process (AOP) that proceeds in an electron exchange matrix (EEM) prepared by the incorporation of redox-active specie in silica matrices using the sol-gel synthesis route. The results, which are supported by DFT calculations, show that the silicon skeleton of the EEM has two important roles, both as a porous matrix that hosts the redox species and as an oxidant species involved in the AOP. The calculations indicate that the formation of a radical on the nitrogen is favored. The suggested mechanism could shed light on the AOP, which proceeds in a heterogenous system, and on its application inside the understudied EEMs that, until now, have been a virtual black box. A better understanding of the mechanism could lead to improved control over the heterogeneous processes that can play a critical role in industries with the need to treat small amounts of toxic compounds at low concentrations, such as in the pharmaceutical industry.

Original languageEnglish
Article numbere202300130
Issue number18
StatePublished - 15 Sep 2023


  • DFT calculations
  • Electron exchange matrix
  • PCA
  • Sol-gel matrix
  • Waste treatment


Dive into the research topics of 'Dual Role of Silicon-based Matrices in Electron Exchange Matrices for Waste Treatment'. Together they form a unique fingerprint.

Cite this