TY - JOUR
T1 - Double-Dimeric Versus Tetrameric Cells for Quantum Cellular Automata
T2 - A Semiempirical Approach to Evaluation of Cell-Cell Responses Combined with Quantum-Chemical Modeling of Molecular Structures
AU - Palii, Andrew
AU - Zilberg, Shmuel
AU - Rybakov, Andrey
AU - Tsukerblat, Boris
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/9/12
Y1 - 2019/9/12
N2 - Quantum dot cellular automata is a computing paradigm based on transistor-free logic, which in turn relies on the idea of encoding binary information in bistable charge configurations of quantum dots and process information via Coulomb interactions. In the context of molecular implementation of quantum dot cellular automata, we have compared the properties of two possible kinds of molecular square cells, namely, cells tailored from two one-electron mixed valence dimers (double-dimeric cells) and a two-electron mixed valence tetramer. The physical model (based on the Hubbard-type Hamiltonian) of the cells involves the Coulomb interelectronic interaction, electron transfer, and vibronic coupling. We have demonstrated that the difference in the transfer pathways in the two types of cells gives rise to a considerable difference in their functional characteristics. Thus, the double-dimeric cell exhibits a more abrupt nonlinear cell-cell response, which is a prerequisite for the efficient functioning of quantum cellular automata. The difference in the cell-cell responses for the two kinds of cells is shown to be smaller for a weak electron transfer and/or strong vibronic coupling when the mobility of the electronic pair is strongly constrained. The dimeric and tetrameric systems, 1,4-dithia-hexane and crown ether 1,4,7,10-tetrathiacyclododecane, were selected as the molecular systems for the implementation of the proposed Hubbard-type analysis. This choice is prompted by the positive charge localization on the S-atoms, which are not connected covalently. We have performed the quantum-chemical calculations of the 1,4-dithia-compound with two S-atoms connected by a saturated carbon bridge CH2CH2 (proposed as a dimeric subunit) and the corresponding tetrameric structures of the crown ethers 1,4,7,10-tetrathiacyclododecane: parent neutral molecule, cation, and dication. The quantum-chemical estimations allowed us to quantitatively unveil the key parameters of the dimeric and tetrameric systems and to conclude that the proposed compounds can serve as cells with predominantly antipodal charge separation, which are potentially able to encode binary information.
AB - Quantum dot cellular automata is a computing paradigm based on transistor-free logic, which in turn relies on the idea of encoding binary information in bistable charge configurations of quantum dots and process information via Coulomb interactions. In the context of molecular implementation of quantum dot cellular automata, we have compared the properties of two possible kinds of molecular square cells, namely, cells tailored from two one-electron mixed valence dimers (double-dimeric cells) and a two-electron mixed valence tetramer. The physical model (based on the Hubbard-type Hamiltonian) of the cells involves the Coulomb interelectronic interaction, electron transfer, and vibronic coupling. We have demonstrated that the difference in the transfer pathways in the two types of cells gives rise to a considerable difference in their functional characteristics. Thus, the double-dimeric cell exhibits a more abrupt nonlinear cell-cell response, which is a prerequisite for the efficient functioning of quantum cellular automata. The difference in the cell-cell responses for the two kinds of cells is shown to be smaller for a weak electron transfer and/or strong vibronic coupling when the mobility of the electronic pair is strongly constrained. The dimeric and tetrameric systems, 1,4-dithia-hexane and crown ether 1,4,7,10-tetrathiacyclododecane, were selected as the molecular systems for the implementation of the proposed Hubbard-type analysis. This choice is prompted by the positive charge localization on the S-atoms, which are not connected covalently. We have performed the quantum-chemical calculations of the 1,4-dithia-compound with two S-atoms connected by a saturated carbon bridge CH2CH2 (proposed as a dimeric subunit) and the corresponding tetrameric structures of the crown ethers 1,4,7,10-tetrathiacyclododecane: parent neutral molecule, cation, and dication. The quantum-chemical estimations allowed us to quantitatively unveil the key parameters of the dimeric and tetrameric systems and to conclude that the proposed compounds can serve as cells with predominantly antipodal charge separation, which are potentially able to encode binary information.
UR - http://www.scopus.com/inward/record.url?scp=85072574474&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.9b05942
DO - 10.1021/acs.jpcc.9b05942
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85072574474
SN - 1932-7447
VL - 123
SP - 22614
EP - 22623
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 36
ER -