TY - GEN
T1 - Determining maximum MPP-tracking sampling frequency for input-voltage-controlled PV-interfacing converter
AU - Kivimaki, Jyri
AU - Sitbon, Moshe
AU - Kolesnik, Sergei
AU - Kuperman, Alon
AU - Suntio, Teuvo
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016
Y1 - 2016
N2 - A maximum-power-point tracking (MPPT) algorithm is essential in all controllers of solar power electronic converters due to the nonlinear current-voltage characteristics of a photovoltaic generator. One of the most widely utilized algorithms are perturbative MPPT techniques such as perturb and observe and incremental conductance methods due to their simple implementation with relatively good tracking performance. However, in order to optimize the performance of such algorithms, the design parameters - sampling frequency and perturbation step size - need to be designed in respect to interfaced power electronic converter. Recent studies have provided state-of-art MPP-tracking design rules for single and two-stage grid-connected PV systems. Unfortunately, the analysis of those studies does not provide analytical results for PV power transient response under feedback-controlled converters. This paper provides reduced-order transfer functions for the converters equipped with either I-type or PID-type controllers in order to approximate the maximum sampling or perturbation frequency for MPP-tracking algorithms. The analysis reveals the factors affecting the transient behavior similarly as in open-loop converter providing valuable tools for optimizing MPP-tracking perturbation frequency design.
AB - A maximum-power-point tracking (MPPT) algorithm is essential in all controllers of solar power electronic converters due to the nonlinear current-voltage characteristics of a photovoltaic generator. One of the most widely utilized algorithms are perturbative MPPT techniques such as perturb and observe and incremental conductance methods due to their simple implementation with relatively good tracking performance. However, in order to optimize the performance of such algorithms, the design parameters - sampling frequency and perturbation step size - need to be designed in respect to interfaced power electronic converter. Recent studies have provided state-of-art MPP-tracking design rules for single and two-stage grid-connected PV systems. Unfortunately, the analysis of those studies does not provide analytical results for PV power transient response under feedback-controlled converters. This paper provides reduced-order transfer functions for the converters equipped with either I-type or PID-type controllers in order to approximate the maximum sampling or perturbation frequency for MPP-tracking algorithms. The analysis reveals the factors affecting the transient behavior similarly as in open-loop converter providing valuable tools for optimizing MPP-tracking perturbation frequency design.
UR - http://www.scopus.com/inward/record.url?scp=85015446286&partnerID=8YFLogxK
U2 - 10.1109/ECCE.2016.7855036
DO - 10.1109/ECCE.2016.7855036
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85015446286
T3 - ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
BT - ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
Y2 - 18 September 2016 through 22 September 2016
ER -