TY - JOUR
T1 - Detection of nitric oxide from pig trachea by a fluorescence method
AU - Lozinsky, Evgenia M.
AU - Martina, Lioubov V.
AU - Shames, Alexander I.
AU - Uzlaner, Natalya
AU - Masarwa, Alexandra
AU - Likhtenshtein, Gertz I.
AU - Meyerstein, Dan
AU - Martin, Vladimir V.
AU - Priel, Zvi
N1 - Funding Information:
Funding was provided by NIH (Grant GMS 55445), by the German-Israeli James Frank Program for Laser–Matter Interactions, and by The Israel Science Foundation (Grant 262/00). N. Uzlaner acknowledges the fellowship support of the Clore Foundation.
PY - 2004/3/15
Y1 - 2004/3/15
N2 - A nitronyl nitroxide radical covalently linked to an organic fluorophore, pyrene, was used to detect nitric oxide (NO) from freshly excited tissues. This approach is based on the phenomenon of the intramolecular fluorescence quenching of the fluorophore fragment by the nitroxide. The pyrene-nitronyl (PN) reacts with NO to yield a pyrene-imino nitroxide radical (PI) and NO 2. Conversion of PN to PI is accompanied by changes in the electron paramagnetic resonance (EPR) spectrum from a five-line pattern (two equivalent N nuclei) into a seven-line pattern (two nonequivalent N nuclei). The transformation of the EPR signal is accompanied by an increase in the fluorescence intensity since the imino nitroxide radical is a weaker quencher than the nitronyl one. The results indicate that the fluorescence measurements enable detection of nanomolar concentrations of NO compared to a sensitivity threshold of only several micromolar for the EPR technique. The method was applied to the determination of NO and S-nitroso compounds in tissue from pig trachea epithelia. The measured basal flux of S-nitroso compounds obtained from the tissues was about 1.2nmol/g×min, and NO-synthase stimulated by extracellular adenosine 5′-triphosphate produced NO flux of 0.9nmol/g×min.
AB - A nitronyl nitroxide radical covalently linked to an organic fluorophore, pyrene, was used to detect nitric oxide (NO) from freshly excited tissues. This approach is based on the phenomenon of the intramolecular fluorescence quenching of the fluorophore fragment by the nitroxide. The pyrene-nitronyl (PN) reacts with NO to yield a pyrene-imino nitroxide radical (PI) and NO 2. Conversion of PN to PI is accompanied by changes in the electron paramagnetic resonance (EPR) spectrum from a five-line pattern (two equivalent N nuclei) into a seven-line pattern (two nonequivalent N nuclei). The transformation of the EPR signal is accompanied by an increase in the fluorescence intensity since the imino nitroxide radical is a weaker quencher than the nitronyl one. The results indicate that the fluorescence measurements enable detection of nanomolar concentrations of NO compared to a sensitivity threshold of only several micromolar for the EPR technique. The method was applied to the determination of NO and S-nitroso compounds in tissue from pig trachea epithelia. The measured basal flux of S-nitroso compounds obtained from the tissues was about 1.2nmol/g×min, and NO-synthase stimulated by extracellular adenosine 5′-triphosphate produced NO flux of 0.9nmol/g×min.
KW - Cilia
KW - Electron paramagnetic resonance (EPR)
KW - Fluorescence
KW - Fluorophore-nitronyl-nitroxide
KW - Nitric oxide
KW - Trachea
UR - http://www.scopus.com/inward/record.url?scp=1442274761&partnerID=8YFLogxK
U2 - 10.1016/j.ab.2003.12.004
DO - 10.1016/j.ab.2003.12.004
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 15003554
AN - SCOPUS:1442274761
SN - 0003-2697
VL - 326
SP - 139
EP - 145
JO - Analytical Biochemistry
JF - Analytical Biochemistry
IS - 2
ER -