Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions: State of the Art and Future Directions

Zeynettin Akkus, Alfiia Galimzianova, Assaf Hoogi, Daniel L. Rubin, Bradley J. Erickson

Research output: Contribution to journalArticlepeer-review

817 Scopus citations

Abstract

Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

Original languageEnglish
Pages (from-to)449-459
Number of pages11
JournalJournal of Digital Imaging
Volume30
Issue number4
DOIs
StatePublished - Aug 2017
Externally publishedYes

Keywords

  • Brain lesion segmentation
  • Convolutional neural network
  • Deep learning
  • Quantitative brain MRI

Fingerprint

Dive into the research topics of 'Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions: State of the Art and Future Directions'. Together they form a unique fingerprint.

Cite this