CTrGAN: Cycle Transformers GAN for Gait Transfer

Shahar Mahpod, Noam Gaash, Hay Hoffman, Gil Ben-Artzi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce a novel approach for gait transfer from unconstrained videos in-the-wild. In contrast to motion transfer, the objective here is not to imitate the source's motions by the target, but rather to replace the walking source with the target, while transferring the target's typical gait. Our approach can be trained only once with multiple sources and is able to transfer the gait of the target from unseen sources, eliminating the need for retraining for each new source independently. Furthermore, we propose a novel metrics for gait transfer based on gait recognition models that enable to quantify the quality of the transferred gait, and show that existing techniques yield a discrepancy that can be easily detected.We introduce Cycle Transformers GAN (CTrGAN), that consist of a decoder and encoder, both Transformers, where the attention is on the temporal domain between complete images rather than the spatial domain between patches. Using a widely-used gait recognition dataset, we demonstrate that our approach is capable of producing over an order of magnitude more realistic personalized gaits than existing methods, even when used with sources that were not available during training. As part of our solution, we present a detector that determines whether a video is real or generated by our model.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages371-381
Number of pages11
ISBN (Electronic)9781665493468
DOIs
StatePublished - 2023
Event23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
Duration: 3 Jan 20237 Jan 2023

Publication series

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Country/TerritoryUnited States
CityWaikoloa
Period3/01/237/01/23

Keywords

  • Algorithms: Computational photography
  • Biometrics
  • body pose
  • face
  • gesture
  • image and video synthesis

Fingerprint

Dive into the research topics of 'CTrGAN: Cycle Transformers GAN for Gait Transfer'. Together they form a unique fingerprint.

Cite this