Course Allocation with Friendships as an Asymmetric Distributed Constraint Optimization Problem

Ilya Khakhiashvili, Tal Grinshpoun, Lihi Dery

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Course allocation, i.e., the problem of assigning students to courses, is a difficult problem. Students value being assigned to the same course as their friends. We propose a model that considers not only the students' preferences over courses but also their preferences over classmates. We formulate the problem as an asymmetric distributed constraint optimization problem. This solution has an additional interesting feature: it is solved in a distributed manner, thus removing the need to directly share private preferences with anyone. An extensive evaluation of our proposed model on real-world student preferences over courses shows that it obtains high utility for the students, while keeping the solution fair and observing courses' seat capacity limitations. Our model is general and can be adapted to solve a variety of multi-allocation problems where it is required to consider friendships.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
Pages688-693
Number of pages6
ISBN (Electronic)9781450391153
DOIs
StatePublished - 14 Dec 2021
Event2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021 - Virtual, Online, Australia
Duration: 14 Dec 202117 Dec 2021

Publication series

NameACM International Conference Proceeding Series

Conference

Conference2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021
Country/TerritoryAustralia
CityVirtual, Online
Period14/12/2117/12/21

Keywords

  • ADCOP
  • course allocation
  • friendships
  • multi-unit allocation

Fingerprint

Dive into the research topics of 'Course Allocation with Friendships as an Asymmetric Distributed Constraint Optimization Problem'. Together they form a unique fingerprint.

Cite this