Comparison of cp-pc-saft and saft-vr-mie in predicting phase equilibria of binary systems comprising gases and 1-alkyl-3-methylimidazolium ionic liquids

Asaf Chiko, Ilya Polishuk, Esteban Cea-Klapp, José Matías Garrido

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

This study compares performances of the Critical Point-based revision of Perturbed-Chain SAFT (CP-PC-SAFT) and the SAFT of Variable Range and Mie Potential (SAFT-VR-Mie) in predicting the available data on VLE, LLVE, critical loci and saturated phase densities of systems comprising CO, O2, CH4, H2 S, SO2, propane, the refrigerants R22, R23, R114, R124, R125, R125, R134a, and R1234ze(E) and ionic liquids (ILs) with 1-alkyl-3-methylimidazolium ([Cn mim]+ ) cations and bis(trifluoromethanesulfonyl)imide ([NTf2 ] ), tetrafluoroborate ([BF4 ] ) and hexafluorophosphate ([PF6 ] ) anions. Both models were implemented in the entirely predictive manner with k12 = 0. The fundamental Global Phase Diagram considerations of the IL systems are discussed. It is demonstrated that despite a number of quantitative inaccuracies, both models are capable of reproducing the regularities characteristic for the considered systems, which makes them suitable for preliminary estimation of selectivity of the ILs in separating various gases.

Original languageEnglish
Article number6621
JournalMolecules
Volume26
Issue number21
DOIs
StatePublished - 1 Nov 2021

Keywords

  • Ionic liquids
  • Predictive modeling
  • SAFT

Fingerprint

Dive into the research topics of 'Comparison of cp-pc-saft and saft-vr-mie in predicting phase equilibria of binary systems comprising gases and 1-alkyl-3-methylimidazolium ionic liquids'. Together they form a unique fingerprint.

Cite this