Chemical Structure and Side Reactions in Polyurea Synthesized via the Water–Diisocyanate Synthesis Pathway

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Industrial polyureas are typically synthesized using diisocyanates via two possible alternative pathways: the extremely quick and highly exothermal diamine–diisocyanate pathway and the relatively slow and mild water–diisocyanate pathway. Although polyurea synthesis via the water–diisocyanate pathway is known and has been industrially applied for many decades, there is surprisingly very little analytical information in the literature in relation to the type and extent of the occurring side reactions and the resulting chemical structures following this synthesis pathway. The synthesis of polyureas exhibiting very high concentrations of carbonyl-containing groups resulted in strong and accurate diagnostic analytical signals of combined FTIR and solid-state 13C NMR analysis. Despite the strictly linear theoretical chemical structure designed, the syntheses resulted in highly nonlinear and crosslinked polymers. It was analytically found that the water–diisocyanate pathway preferentially produced highly dominant and almost equal contents of both biuret structures and tertiary oligo-uret structures, with a very small occurrence of urea groups. This is in strong contrast with the chemical structures previously obtained via the diamine–diisocyanate polyurea synthesis pathway, which almost exclusively resulted in biuret structures. The much slower reaction and crosslinking rate of the water–diisocyanate synthesis pathway enabled the further access of isocyanate groups to the already-formed secondary nitrogens, thus facilitating the formation of complex hierarchical tertiary oligo-uret structures.

Original languageEnglish
Article number3524
JournalPolymers
Volume15
Issue number17
DOIs
StatePublished - Sep 2023

Keywords

  • FTIR
  • NMR
  • crosslinking
  • expanded polyurea
  • polymerization mechanism
  • polyurea

Fingerprint

Dive into the research topics of 'Chemical Structure and Side Reactions in Polyurea Synthesized via the Water–Diisocyanate Synthesis Pathway'. Together they form a unique fingerprint.

Cite this