TY - JOUR
T1 - BovineTalk
T2 - machine learning for vocalization analysis of dairy cattle under the negative affective state of isolation
AU - Gavojdian, Dinu
AU - Mincu, Madalina
AU - Lazebnik, Teddy
AU - Oren, Ariel
AU - Nicolae, Ioana
AU - Zamansky, Anna
N1 - Publisher Copyright:
Copyright © 2024 Gavojdian, Mincu, Lazebnik, Oren, Nicolae and Zamansky.
PY - 2024
Y1 - 2024
N2 - There is a critical need to develop and validate non-invasive animal-based indicators of affective states in livestock species, in order to integrate them into on-farm assessment protocols, potentially via the use of precision livestock farming (PLF) tools. One such promising approach is the use of vocal indicators. The acoustic structure of vocalizations and their functions were extensively studied in important livestock species, such as pigs, horses, poultry, and goats, yet cattle remain understudied in this context to date. Cows were shown to produce two types of vocalizations: low-frequency calls (LF), produced with the mouth closed, or partially closed, for close distance contacts, and open mouth emitted high-frequency calls (HF), produced for long-distance communication, with the latter considered to be largely associated with negative affective states. Moreover, cattle vocalizations were shown to contain information on individuality across a wide range of contexts, both negative and positive. Nowadays, dairy cows are facing a series of negative challenges and stressors in a typical production cycle, making vocalizations during negative affective states of special interest for research. One contribution of this study is providing the largest to date pre-processed (clean from noises) dataset of lactating adult multiparous dairy cows during negative affective states induced by visual isolation challenges. Here, we present two computational frameworks—deep learning based and explainable machine learning based, to classify high and low-frequency cattle calls and individual cow voice recognition. Our models in these two frameworks reached 87.2 and 89.4% accuracy for LF and HF classification, with 68.9 and 72.5% accuracy rates for the cow individual identification, respectively.
AB - There is a critical need to develop and validate non-invasive animal-based indicators of affective states in livestock species, in order to integrate them into on-farm assessment protocols, potentially via the use of precision livestock farming (PLF) tools. One such promising approach is the use of vocal indicators. The acoustic structure of vocalizations and their functions were extensively studied in important livestock species, such as pigs, horses, poultry, and goats, yet cattle remain understudied in this context to date. Cows were shown to produce two types of vocalizations: low-frequency calls (LF), produced with the mouth closed, or partially closed, for close distance contacts, and open mouth emitted high-frequency calls (HF), produced for long-distance communication, with the latter considered to be largely associated with negative affective states. Moreover, cattle vocalizations were shown to contain information on individuality across a wide range of contexts, both negative and positive. Nowadays, dairy cows are facing a series of negative challenges and stressors in a typical production cycle, making vocalizations during negative affective states of special interest for research. One contribution of this study is providing the largest to date pre-processed (clean from noises) dataset of lactating adult multiparous dairy cows during negative affective states induced by visual isolation challenges. Here, we present two computational frameworks—deep learning based and explainable machine learning based, to classify high and low-frequency cattle calls and individual cow voice recognition. Our models in these two frameworks reached 87.2 and 89.4% accuracy for LF and HF classification, with 68.9 and 72.5% accuracy rates for the cow individual identification, respectively.
KW - affective states
KW - animal communication
KW - cattle
KW - vocal parameters
KW - welfare indicators
UR - http://www.scopus.com/inward/record.url?scp=85185282772&partnerID=8YFLogxK
U2 - 10.3389/fvets.2024.1357109
DO - 10.3389/fvets.2024.1357109
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85185282772
SN - 2297-1769
VL - 11
JO - Frontiers in Veterinary Science
JF - Frontiers in Veterinary Science
M1 - 1357109
ER -