A 3D rotary renal and mesenchymal stem cell culture model unveils cell death mechanisms induced by matrix deficiency and low shear stress

Nilly Shimony, Idit Avrahami, Raphael Gorodetsky, Gregory Elkin, Keren Tzukert, Lior Zangi, Lilia Levdansky, Lina Krasny, Yosef S. Haviv

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Background. In epithelial and endothelial cells, detachment from the matrix results in anoikis, a form of apoptosis, whereas stromal and cancer cells are often anchorage independent. The classical anoikis model is based on static 3D epithelial cell culture conditions (STCK). Methods. We characterized a new model of renal, stromal and mesenchymal stem cell (MSC) matrix deprivation, based on slow rotation cell culture conditions (ROCK). This model induces anoikis using a low shear stress, laminar flow. The mechanism of cell death was determined via FACS (fluorescence-activated cell sorting) analysis for annexin V and propidium iodide uptake and via DNA laddering. Results. While only renal epithelial cells progressively died in STCK, the ROCK model could induce apoptosis in stromal and transformed cells; cell survival decreased in ROCK versus STCK to 40%, 52%, 62% and 7% in human fibroblast, rat MSC, renal cell carcinoma (RCC) and human melanoma cell lines, respectively. Furthermore, while ROCK induced primarily apoptosis in renal epithelial cells, necrosis was more prevalent in transformed and cancer cells [necrosis/apoptosis ratio of 72.7% in CaKi-1 RCC cells versus 4.3% in MDCK (Madin-Darby canine kidney) cells]. The ROCK-mediated shift to necrosis in RCC cells was further accentuated 3.4-fold by H2O 2-mediated oxidative stress while in adherent HK-2 renal epithelial cells, oxidative stress enhanced apoptosis. ROCK conditions could also unveil a similar pattern in the LZ100 rat MSC line where in ROCK 44% less apoptosis was observed versus STCK and 45% less apoptosis versus monolayer conditions. Apoptosis in response to oxidative stress was also attenuated in the rat MSC line in ROCK, thereby highlighting rat MSC transformation. Conclusions. The ROCK matrix-deficiency cell culture model may provide a valuable insight into the mechanism of renal and MSC cell death in response to matrix deprivation.

Original languageEnglish
Pages (from-to)2071-2080
Number of pages10
JournalNephrology Dialysis Transplantation
Issue number6
StatePublished - Jun 2008
Externally publishedYes


  • Anoikis
  • Mesenchymal stem cells
  • Necrosis
  • Renal cancer
  • Shear stress


Dive into the research topics of 'A 3D rotary renal and mesenchymal stem cell culture model unveils cell death mechanisms induced by matrix deficiency and low shear stress'. Together they form a unique fingerprint.

Cite this