Weighted well-covered claw-free graphs

Vadim E. Levit, David Tankus

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

10 اقتباسات (Scopus)

ملخص

A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space. Given an input claw-free graph G, we present an O(m32n3) algorithm, whose input is a claw-free graph G, and output is the vector space of weight functions w, for which G is w-well-covered. A graph G is equimatchable if all its maximal matchings are of the same cardinality. Assume that a weight function w is defined on the edges of G. Then G is w-equimatchable if all its maximal matchings are of the same weight. For every graph G, the set of weight functions w such that G is w-equimatchable is a vector space. We present an O(m·n4+n5logn) algorithm, which receives an input graph G, and outputs the vector space of weight functions w such that G is w-equimatchable.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)99-106
عدد الصفحات8
دوريةDiscrete Mathematics
مستوى الصوت338
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 6 مارس 2015

بصمة

أدرس بدقة موضوعات البحث “Weighted well-covered claw-free graphs'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا