Vallée-Poussin theorem for Hadamard fractional functional differential equations

Martin Bohner, Alexander Domoshnitsky, Elena Litsyn, Seshadev Padhi, Satyam Narayan Srivastava

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

3 اقتباسات (Scopus)

ملخص

We propose necessary and sufficient conditions for the negativity of the two-point boundary value problem in the form of the Vallée-Poussin theorem about differential inequalities for the Hadamard fractional functional differential problem (Formula presented.) Here, the operator (Formula presented.) can be an operator with deviation (of delayed or advanced type), an integral operator or various linear combinations and superpositions. For example, the operator can be of the forms (Formula presented.), (Formula presented.) or (Formula presented.). We obtain explicit tests of negativity of Green's function in the form of algebraic inequalities. Our paper is the first one where a general form of the operator is considered with Hadamard fractional derivatives.

اللغة الأصليةالإنجليزيّة
رقم المقال2259057
دوريةApplied Mathematics in Science and Engineering
مستوى الصوت31
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2023

بصمة

أدرس بدقة موضوعات البحث “Vallée-Poussin theorem for Hadamard fractional functional differential equations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا