Towards robust model selection using estimation and approximation error bounds

Joel Ratsaby, Ronny Meir, Vitaly Maiorov

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

6 اقتباسات (Scopus)

ملخص

One of the main problems in machine learning and statistical inference is selecting an appropriate model by which a set of data can be explained. A novel model selection criterion based on the uniform convergence of empirical processes combined with the results concerning the approximation ability of non-linear manifolds of functions is introduced. A coherent and robust framework for model selection was elucidated and a lower bound on the approximation error was established, giving a well specified sense for most functions of interest.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings of the Annual ACM Conference on Computational Learning TheoryPages 57 - 671996 Proceedings of the 1996 9th Annual Conference on Computational Learning Theory28 June 1996through 1 July 1996
الصفحات57-67
عدد الصفحات11
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1996
منشور خارجيًانعم
الحدثProceedings of the 1996 9th Annual Conference on Computational Learning Theory - Desenzano del Garda, Italy
المدة: ٢٨ يونيو ١٩٩٦١ يوليو ١٩٩٦

!!Conference

!!ConferenceProceedings of the 1996 9th Annual Conference on Computational Learning Theory
المدينةDesenzano del Garda, Italy
المدة٢٨/٠٦/٩٦١/٠٧/٩٦

بصمة

أدرس بدقة موضوعات البحث “Towards robust model selection using estimation and approximation error bounds'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا