ملخص
One of the main problems in machine learning and statistical inference is selecting an appropriate model by which a set of data can be explained. A novel model selection criterion based on the uniform convergence of empirical processes combined with the results concerning the approximation ability of non-linear manifolds of functions is introduced. A coherent and robust framework for model selection was elucidated and a lower bound on the approximation error was established, giving a well specified sense for most functions of interest.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings of the Annual ACM Conference on Computational Learning TheoryPages 57 - 671996 Proceedings of the 1996 9th Annual Conference on Computational Learning Theory28 June 1996through 1 July 1996 |
الصفحات | 57-67 |
عدد الصفحات | 11 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 1996 |
منشور خارجيًا | نعم |
الحدث | Proceedings of the 1996 9th Annual Conference on Computational Learning Theory - Desenzano del Garda, Italy المدة: ٢٨ يونيو ١٩٩٦ → ١ يوليو ١٩٩٦ |
!!Conference
!!Conference | Proceedings of the 1996 9th Annual Conference on Computational Learning Theory |
---|---|
المدينة | Desenzano del Garda, Italy |
المدة | ٢٨/٠٦/٩٦ → ١/٠٧/٩٦ |