ملخص
In this paper we present a new type of binary classifier defined on the unit cube. This classifier combines some of the aspects of the standard methods that have been used in the logical analysis of data (LAD) and geometric classifiers, with a nearest-neighbor paradigm. We assess the predictive performance of the new classifier in learning from a sample, obtaining generalization error bounds that improve as the 'sample width' of the classifier increases.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | International Symposium on Artificial Intelligence and Mathematics, ISAIM 20122012 International Symposium on Artificial Intelligence and Mathematics, ISAIM 20129 January 2012through 11 January 2012 |
حالة النشر | نُشِر - 2012 |
الحدث | International Symposium on Artificial Intelligence and Mathematics, ISAIM 2012 - Fort Lauderdale, FL, الولايات المتّحدة المدة: ٩ يناير ٢٠١٢ → ١١ يناير ٢٠١٢ |
!!Conference
!!Conference | International Symposium on Artificial Intelligence and Mathematics, ISAIM 2012 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | Fort Lauderdale, FL |
المدة | ٩/٠١/١٢ → ١١/٠١/١٢ |