Synthetic Sensor Array Training Sets for Neural Networks

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

3 اقتباسات (Scopus)

ملخص

It is often hard to relate the sensor's electrical output to the physical scenario when a multidimensional measurement is of interest. An artificial neural network may be a solution. Nevertheless, if the training data set is extracted from a real experimental setup, it can become unreachable in terms of time resources. The same issue arises when the physical measurement is expected to extend across a wide range of values. This paper presents a novel method for overcoming the long training time in a physical experiment set up by bootstrapping a relatively small data set for generating a synthetic data set which can be used for training an artificial neural network. Such a method can be applied to various measurement systems that yield sensor output which combines simultaneous occurrences or wide-range values of physical phenomena of interest. We discuss to which systems our method may be applied. We exemplify our results on three study cases: a seismic sensor array, a linear array of strain gauges, and an optical sensor array. We present the experimental process, its results, and the resulting accuracies.

اللغة الأصليةالإنجليزيّة
رقم المقال9254315
دوريةJournal of Sensors
مستوى الصوت2019
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2019

بصمة

أدرس بدقة موضوعات البحث “Synthetic Sensor Array Training Sets for Neural Networks'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا