Supertropical linear algebra

Zur Izhakian, Manfred Knebusch, Louis Rowen

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

22 اقتباسات (Scopus)

ملخص

The objective of this paper is to lay out the algebraic theory of supertropical vector spaces and linear algebra, utilizing the key antisymmetric relation of "ghost surpasses". Special attention is paid to the various notions of "base", which include d-base and s-base, and these are compared to other treatments in the tropical theory. Whereas the number of elements in various d-bases may differ, it is shown that when an s-base exists, it is unique up to permutation and multiplication by scalars, and can be identified with a set of "critical" elements. Then we turn to orthogonality of vectors, which leads to supertropical bilinear forms and a supertropical version of the Gram matrix, including its connection to linear dependence. We also obtain a supertropical version of a theorem of Artin, which says that if g-orthogonality is a symmetric relation, then the underlying bilinear form is (supertropically) symmetric.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)43-75
عدد الصفحات33
دوريةPacific Journal of Mathematics
مستوى الصوت266
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2013
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Supertropical linear algebra'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا