TY - JOUR
T1 - SRAM circuit-failure modeling and reliability simulation with SPICE
AU - Li, Xiaojun
AU - Qin, Jin
AU - Huang, Bing
AU - Zhang, Xiaohu
AU - Bernstein, Joseph B.
PY - 2006/6
Y1 - 2006/6
N2 - Based on some new accelerated lifetime models and failure equivalent circuit modeling techniques for the common semiconductor wear out mechanisms, simulation program with integrated circuit emphasis (SPICE) can be used to characterize CMOS VLSI circuit failure behaviors and perform reliability simulation. This paper used a simple SRAM circuit as an example to demonstrate how to apply SPICE to circuit reliability modeling, simulation, analysis, and design. The SRAM circuit, implemented with a commercial 0.25-μm technology, consists of functional blocks of 1-bit six-transistor cell, precharge, read/write control, and sense amplifier. The SRAM operation sequence of "write 0, read 0, write 1, read 1" was first simulated in SPICE to obtain the terminal voltage and current stress profiles of each transistor. Then, normalized lifetimes of all transistors in terms of each failure mechanism were calculated with the corresponding accelerated lifetime models. These lifetime values were sorted to single out the most damaged transistors. Finally, the selected transistors were substituted with failure equivalent circuit models, and SPICE simulations were performed again to characterize the circuit performance, functionality, and failure behaviors. The simulation shows that the 0.25μm technology, hot-carrier injection (HCI), and time-dependent dielectric breakdown (TDDB) had significant effects on SRAM-cell stability and voltage-transfer characteristics, while negative bias temperature instability (NBTI) mainly degraded the cell transition speed when the cell state flipped. This illustrative SRAM simulation work proves that, with SPICE and the failure equivalent circuit models, circuit designers can better understand the damage effects of HCI/TDDB/NBTI on the circuit operation, quickly estimate the circuit lifetime, make appropriate performance/reliability tradeoffs, and formulate practical design guidelines to improve the circuit reliability.
AB - Based on some new accelerated lifetime models and failure equivalent circuit modeling techniques for the common semiconductor wear out mechanisms, simulation program with integrated circuit emphasis (SPICE) can be used to characterize CMOS VLSI circuit failure behaviors and perform reliability simulation. This paper used a simple SRAM circuit as an example to demonstrate how to apply SPICE to circuit reliability modeling, simulation, analysis, and design. The SRAM circuit, implemented with a commercial 0.25-μm technology, consists of functional blocks of 1-bit six-transistor cell, precharge, read/write control, and sense amplifier. The SRAM operation sequence of "write 0, read 0, write 1, read 1" was first simulated in SPICE to obtain the terminal voltage and current stress profiles of each transistor. Then, normalized lifetimes of all transistors in terms of each failure mechanism were calculated with the corresponding accelerated lifetime models. These lifetime values were sorted to single out the most damaged transistors. Finally, the selected transistors were substituted with failure equivalent circuit models, and SPICE simulations were performed again to characterize the circuit performance, functionality, and failure behaviors. The simulation shows that the 0.25μm technology, hot-carrier injection (HCI), and time-dependent dielectric breakdown (TDDB) had significant effects on SRAM-cell stability and voltage-transfer characteristics, while negative bias temperature instability (NBTI) mainly degraded the cell transition speed when the cell state flipped. This illustrative SRAM simulation work proves that, with SPICE and the failure equivalent circuit models, circuit designers can better understand the damage effects of HCI/TDDB/NBTI on the circuit operation, quickly estimate the circuit lifetime, make appropriate performance/reliability tradeoffs, and formulate practical design guidelines to improve the circuit reliability.
KW - Circuit-reliability analysis
KW - Failure mechanisms
KW - Reliability modeling
KW - SRAM
KW - Simulation program with integrated circuit emphasis (SPICE) simulation
UR - http://www.scopus.com/inward/record.url?scp=33748109378&partnerID=8YFLogxK
U2 - 10.1109/TDMR.2006.876568
DO - 10.1109/TDMR.2006.876568
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33748109378
SN - 1530-4388
VL - 6
SP - 235
EP - 246
JO - IEEE Transactions on Device and Materials Reliability
JF - IEEE Transactions on Device and Materials Reliability
IS - 2
M1 - 1673716
ER -