Source Detection in Networks using the Stationary Distribution of a Markov Chain

Yael Sabato, Amos Azaria, Noam Hazon

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

ملخص

Nowadays, the diffusion of information through social networks is a powerful phenomenon. One common way to model diffusions in social networks is the Independent Cascade (IC) model. Given a set of infected nodes according to the IC model, a natural problem is the source detection problem, in which the goal is to identify the unique node that has started the diffusion. Maximum Likelihood Estimation (MLE) is a common approach for tackling the source detection problem, but it is computationally hard. In this work, we propose an efficient method for the source detection problem under the MLE approach, which is based on computing the stationary distribution of a Markov chain. Using simulations, we demonstrate the effectiveness of our method compared to other state-of-the-art methods from the literature, both on random and real-world networks.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)2447-2449
عدد الصفحات3
دوريةProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
مستوى الصوت2024-May
حالة النشرنُشِر - 2024
الحدث23rd International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024 - Auckland, نيوزلندا
المدة: ٦ مايو ٢٠٢٤١٠ مايو ٢٠٢٤

بصمة

أدرس بدقة موضوعات البحث “Source Detection in Networks using the Stationary Distribution of a Markov Chain'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا