ملخص
Goerdt [Goe91] considered a weakened version of the Cutting Plane proof system with a restriction on the degree of falsity of intermediate inequalities. (The degree of falsity of an inequality written in the form ∑ a ixi + ∑ bi(1 - xi) ≥ A, ai, bi ≥ 0 is its constant term A.) He proved a superpolynomial lower bound on the proof length of Tseitin-Urquhart tautologies when the degree of falsity is bounded by n/log2 n+1 (n is the number of variables). In this paper we show that if the degree of falsity of a Cutting Planes proof Π is bounded by d(n) ≤ n/2, this proof can be easily transformed into a resolution proof of length at most |Π|·( d(n)-1n)64d(n). Therefore, an exponential bound on the proof length of Tseitin-Urquhart tautologies in this system for d(n) ≤ cn for an appropriate constant c > 0 follows immediately from Urquhart's lower bound for resolution proofs [Urq87].
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 135-142 |
عدد الصفحات | 8 |
دورية | Lecture Notes in Computer Science |
مستوى الصوت | 3569 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2005 |
منشور خارجيًا | نعم |
الحدث | 8th International Conference on Theory and Applications of Satisfiability Testing, SAT 2005 - St Andrews, بريطانيا المدة: ١٩ يونيو ٢٠٠٥ → ٢٣ يونيو ٢٠٠٥ |