Ruffle &Riley: Insights from Designing and Evaluating a Large Language Model-Based Conversational Tutoring System

Robin Schmucker, Meng Xia, Amos Azaria, Tom Mitchell

    نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

    2 اقتباسات (Scopus)

    ملخص

    Conversational tutoring systems (CTSs) offer learning experiences through interactions based on natural language. They are recognized for promoting cognitive engagement and improving learning outcomes, especially in reasoning tasks. Nonetheless, the cost associated with authoring CTS content is a major obstacle to widespread adoption and to research on effective instructional design. In this paper, we discuss and evaluate a novel type of CTS that leverages recent advances in large language models (LLMs) in two ways: First, the system enables AI-assisted content authoring by inducing an easily editable tutoring script automatically from a lesson text. Second, the system automates the script orchestration in a learning-by-teaching format via two LLM-based agents (Ruffle &Riley) acting as a student and a professor. The system allows for free-form conversations that follow the ITS-typical inner and outer loop structure. We evaluate Ruffle &Riley’s ability to support biology lessons in two between-subject online user studies (N=200) comparing the system to simpler QA chatbots and reading activity. Analyzing system usage patterns, pre/post-test scores and user experience surveys, we find that Ruffle &Riley users report high levels of engagement, understanding and perceive the offered support as helpful. Even though Ruffle &Riley users require more time to complete the activity, we did not find significant differences in short-term learning gains over the reading activity. Our system architecture and user study provide various insights for designers of future CTSs. We further open-source our system to support ongoing research on effective instructional design of LLM-based learning technologies.

    اللغة الأصليةالإنجليزيّة
    عنوان منشور المضيفArtificial Intelligence in Education - 25th International Conference, AIED 2024, Proceedings
    المحررونAndrew M. Olney, Irene-Angelica Chounta, Zitao Liu, Olga C. Santos, Ig Ibert Bittencourt
    ناشرSpringer Science and Business Media Deutschland GmbH
    الصفحات75-90
    عدد الصفحات16
    رقم المعيار الدولي للكتب (المطبوع)9783031643019
    المعرِّفات الرقمية للأشياء
    حالة النشرنُشِر - 2024
    الحدث25th International Conference on Artificial Intelligence in Education, AIED 2024 - Recife, البرازيل
    المدة: ٨ يوليو ٢٠٢٤١٢ يوليو ٢٠٢٤

    سلسلة المنشورات

    الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    مستوى الصوت14829 LNAI
    رقم المعيار الدولي للدوريات (المطبوع)0302-9743
    رقم المعيار الدولي للدوريات (الإلكتروني)1611-3349

    !!Conference

    !!Conference25th International Conference on Artificial Intelligence in Education, AIED 2024
    الدولة/الإقليمالبرازيل
    المدينةRecife
    المدة٨/٠٧/٢٤١٢/٠٧/٢٤

    بصمة

    أدرس بدقة موضوعات البحث “Ruffle &Riley: Insights from Designing and Evaluating a Large Language Model-Based Conversational Tutoring System'. فهما يشكلان معًا بصمة فريدة.

    قم بذكر هذا