Reconstruction of the Geometric Structure of a Set of Points in the Plane from Its Geometric Tree Graph

Chaya Keller, Micha A. Perles

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

5 اقتباسات (Scopus)

ملخص

Let P be a finite set of points in general position in the plane. The structure of the complete graph K(P) as a geometric graph includes, for any pair [a, b], [c, d] of vertex-disjoint edges, the information whether they cross or not. The simple (i.e., non-crossing) spanning trees (SSTs) of K(P) are the vertices of the so-called Geometric Tree Graph of P, G(P). Two such vertices are adjacent in G(P) if they differ in exactly two edges, i.e., if one can be obtained from the other by deleting an edge and adding another edge. In this paper we show how to reconstruct from G(P) (regarded as an abstract graph) the structure of K(P) as a geometric graph. We first identify within G(P) the vertices that correspond to spanning stars. Then we regard each star S(z) with center z as the representative in G(P) of the vertex z of K(P). (This correspondence is determined only up to an automorphism of K(P) as a geometric graph.) Finally we determine for any four distinct stars S(a), S(b), S(c),  and S(d), by looking at their relative positions in G(P), whether the corresponding segments cross.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)610-637
عدد الصفحات28
دوريةDiscrete and Computational Geometry
مستوى الصوت55
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 أبريل 2016
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Reconstruction of the Geometric Structure of a Set of Points in the Plane from Its Geometric Tree Graph'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا