Reciprocity between moduli and phases in time-dependent wave functions

R. Englman, A. Yahalom

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

16 اقتباسات (Scopus)

ملخص

For time (t)-dependent wave functions, we derive rigorous conjugate relations between analytic decompositions (in the complex t plane) of phases and log moduli. We then show that reciprocity, taking the form of Kramers-Kronig integral relations (but in the time domain), holds between observable phases and moduli in several physically important instances. These include the nearly adiabatic (slowly varying) case, a class of cyclic wave functions, wave packets, and noncyclic states in an “expanding potential”. The results define a unique phase through its analyticity properties, and exhibit the interdependence of geometric phases and related decay probabilities. Several known quantum-mechanical applications possess the reciprocity property obtained in the paper.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)1802-1810
عدد الصفحات9
دوريةPhysical Review A - Atomic, Molecular, and Optical Physics
مستوى الصوت60
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1999
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Reciprocity between moduli and phases in time-dependent wave functions'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا