TY - JOUR
T1 - Ramsey-nice families of graphs
AU - Aharoni, Ron
AU - Alon, Noga
AU - Amir, Michal
AU - Haxell, Penny
AU - Hefetz, Dan
AU - Jiang, Zilin
AU - Kronenberg, Gal
AU - Naor, Alon
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/8
Y1 - 2018/8
N2 - For a finite family F of fixed graphs let Rk(F) be the smallest integer n for which every k-coloring of the edges of the complete graph Kn yields a monochromatic copy of some F∈F. We say that F is k-nice if for every graph G with χ(G)=Rk(F) and for every k-coloring of E(G) there exists a monochromatic copy of some F∈F. It is easy to see that if F contains no forest, then it is not k-nice for any k. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F that contains at least one forest, and for all k≥k0(F) (or at least for infinitely many values of k), F is k-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni et al. (2015) regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.
AB - For a finite family F of fixed graphs let Rk(F) be the smallest integer n for which every k-coloring of the edges of the complete graph Kn yields a monochromatic copy of some F∈F. We say that F is k-nice if for every graph G with χ(G)=Rk(F) and for every k-coloring of E(G) there exists a monochromatic copy of some F∈F. It is easy to see that if F contains no forest, then it is not k-nice for any k. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F that contains at least one forest, and for all k≥k0(F) (or at least for infinitely many values of k), F is k-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni et al. (2015) regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.
UR - http://www.scopus.com/inward/record.url?scp=85046810243&partnerID=8YFLogxK
U2 - 10.1016/j.ejc.2018.04.007
DO - 10.1016/j.ejc.2018.04.007
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85046810243
SN - 0195-6698
VL - 72
SP - 29
EP - 44
JO - European Journal of Combinatorics
JF - European Journal of Combinatorics
ER -