Playing to retain the advantage

Noga Alon, Dan Hefetz, Michael Krivelevich

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

6 اقتباسات (Scopus)

ملخص

Let P be a monotone increasing graph property, let G = (V, E) be a graph, and let q be a positive integer. In this paper, we study the (1: q) Maker-Breaker game, played on the edges of G, in which Maker's goal is to build a graph that satisfies the property P. It is clear that in order for Maker to have a chance of winning, G itself must satisfy P. We prove that if G satisfies P in some strong sense, that is, if one has to delete sufficiently many edges from G in order to obtain a graph that does not satisfy P, then Maker has a winning strategy for this game. We also consider a different notion of satisfying some property in a strong sense, which is motivated by a problem of Duffus, Łuczak and Rödl [6].

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)481-491
عدد الصفحات11
دوريةCombinatorics Probability and Computing
مستوى الصوت19
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - يوليو 2010
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Playing to retain the advantage'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا