Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns

Lior Rokach, Lihi Naamani, Armin Shmilovici

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

19 اقتباسات (Scopus)

ملخص

In business applications such as direct marketing, decision-makers are required to choose the action which best maximizes a utility function. Cost-sensitive learning methods can help them achieve this goal. In this paper, we introduce Pessimistic Active Learning (PAL). PAL employs a novel pessimistic measure, which relies on confidence intervals and is used to balance the exploration/exploitation trade-off. In order to acquire an initial sample of labeled data, PAL applies orthogonal arrays of fractional factorial design. PAL was tested on ten datasets using a decision tree inducer. A comparison of these results to those of other methods indicates PAL's superiority.

اللغة الأصليةالإنجليزيّة
رقم المقال2
الصفحات (من إلى)283-316
عدد الصفحات34
دوريةData Min. Knowl. Discov.
مستوى الصوت17
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2008

بصمة

أدرس بدقة موضوعات البحث “Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا