TY - JOUR
T1 - Pathogen Detection Using Frequency Domain Fluorescent Lifetime Measurements
AU - Yahav, Gilad
AU - Gershanov, Sivan
AU - Salmon-Divon, Mali
AU - Ben-Zvi, Haim
AU - Mircus, Gabriel
AU - Goldenberg-Cohen, Nitza
AU - Fixler, Dror
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12
Y1 - 2018/12
N2 - Objective: Inflammation of the meninges is a source of severe morbidity and therefore is an important health concerns worldwide. The conventional clinical microbiology approaches used today to identify pathogens suffer from several drawbacks and frequently provide false results. This research describes a fast method to detect the presence of pathogens using the frequency domain (FD) fluorescence lifetime (FLT) imaging microscopy (FLIM) system. Methods: The study included 43 individuals divided into 4 groups: 9 diagnosed with different types of bacteria; 16 diagnosed with different types of viruses; 5 healthy samples served as a control; and 12 samples were negative to any pathogen, although presenting related symptoms. All samples contained leukocytes that were extracted from the cerebrospinal fluid (CSF) and were subjected to nuclear staining by 4′, 6-diamidino-2-phenylindole (DAPI) and FLT analyses based on phase and amplitude crossing point (CRPO). Results: Using notched boxplots, we found differences in 95% probability between the first three groups through different notch ranges (NR). Pathogen samples presented a longer median FLT (3.28 ns with NR of 3.24-3.32 ns in bacteria and 3.18 ns with NR of 3.16-3.21 ns in viruses) compared to the control median FLT (2.65 ns with NR of 2.63-2.67 ns). Furthermore, we found that the undetected forth group was divided into two types: a relatively normal median FLT (2.72 ns with NR of 2.68-2.76 ns) and a prolonged FLT (3.22 ns with NR of 3.17-3.27 ns). Conclusion: FLT measurements can differentiate between control and pathogen by the CRPO method. Significance: The FD-FLIM system can provide a high throughput diagnostic technique that does not require a physician.
AB - Objective: Inflammation of the meninges is a source of severe morbidity and therefore is an important health concerns worldwide. The conventional clinical microbiology approaches used today to identify pathogens suffer from several drawbacks and frequently provide false results. This research describes a fast method to detect the presence of pathogens using the frequency domain (FD) fluorescence lifetime (FLT) imaging microscopy (FLIM) system. Methods: The study included 43 individuals divided into 4 groups: 9 diagnosed with different types of bacteria; 16 diagnosed with different types of viruses; 5 healthy samples served as a control; and 12 samples were negative to any pathogen, although presenting related symptoms. All samples contained leukocytes that were extracted from the cerebrospinal fluid (CSF) and were subjected to nuclear staining by 4′, 6-diamidino-2-phenylindole (DAPI) and FLT analyses based on phase and amplitude crossing point (CRPO). Results: Using notched boxplots, we found differences in 95% probability between the first three groups through different notch ranges (NR). Pathogen samples presented a longer median FLT (3.28 ns with NR of 3.24-3.32 ns in bacteria and 3.18 ns with NR of 3.16-3.21 ns in viruses) compared to the control median FLT (2.65 ns with NR of 2.63-2.67 ns). Furthermore, we found that the undetected forth group was divided into two types: a relatively normal median FLT (2.72 ns with NR of 2.68-2.76 ns) and a prolonged FLT (3.22 ns with NR of 3.17-3.27 ns). Conclusion: FLT measurements can differentiate between control and pathogen by the CRPO method. Significance: The FD-FLIM system can provide a high throughput diagnostic technique that does not require a physician.
KW - Biomedical imaging
KW - fluorescence lifetime (FLT)
KW - fluorescence lifetime imaging microscopy (FLIM)
KW - pathogen detection
UR - http://www.scopus.com/inward/record.url?scp=85043472533&partnerID=8YFLogxK
U2 - 10.1109/TBME.2018.2814597
DO - 10.1109/TBME.2018.2814597
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 29993446
AN - SCOPUS:85043472533
SN - 0018-9294
VL - 65
SP - 2731
EP - 2741
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 12
M1 - 8310955
ER -