Partitioning Problems with Splittings and Interval Targets

Samuel Bismuth, Vladislav Makarov, Erel Segal-Halevi, Dana Shapira

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The n-way number partitioning problem is a classic problem in combinatorial optimization, with applications to diverse settings such as fair allocation and machine scheduling. All these problems are NP-hard, but various approximation algorithms are known. We consider three closely related kinds of approximations. The first two variants optimize the partition such that: in the first variant some fixed number s of items can be split between two or more bins and in the second variant we allow at most a fixed number t of splittings. The third variant is a decision problem: the largest bin sum must be within a pre-specified interval, parameterized by a fixed rational number u times the largest item size. When the number of bins n is unbounded, we show that every variant is strongly NP-complete. When the number of bins n is fixed, the running time depends on the fixed parameters s, t, u. For each variant, we give a complete picture of its running time. For n = 2, the running time is easy to identify. Our main results consider any fixed integer n ≥ 3. Using a two-way polynomial-time reduction between the first and the third variant, we show that n-way number-partitioning with s split items can be solved in polynomial time if s ≥ n − 2, and it is NP-complete otherwise. Also, n-way number-partitioning with t splittings can be solved in polynomial time if t ≥ n − 1, and it is NP-complete otherwise. Finally, we show that the third variant can be solved in polynomial time if u ≥ (n − 2)/n, and it is NP-complete otherwise. Our positive results for the optimization problems consider both min-max and max-min versions. Using the same reduction, we provide a fully polynomial-time approximation scheme for the case where the number of split items is lower than n − 2.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف35th International Symposium on Algorithms and Computation, ISAAC 2024
المحررونJulian Mestre, Anthony Wirth
ناشرSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
رقم المعيار الدولي للكتب (الإلكتروني)9783959773546
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 4 ديسمبر 2024
الحدث35th International Symposium on Algorithms and Computation, ISAAC 2024 - Sydney, أستراليا
المدة: ٨ ديسمبر ٢٠٢٤١١ ديسمبر ٢٠٢٤

سلسلة المنشورات

الاسمLeibniz International Proceedings in Informatics, LIPIcs
مستوى الصوت322
رقم المعيار الدولي للدوريات (المطبوع)1868-8969

!!Conference

!!Conference35th International Symposium on Algorithms and Computation, ISAAC 2024
الدولة/الإقليمأستراليا
المدينةSydney
المدة٨/١٢/٢٤١١/١٢/٢٤

بصمة

أدرس بدقة موضوعات البحث “Partitioning Problems with Splittings and Interval Targets'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا