Optimal covers with Hamilton cycles in random graphs

Dan Hefetz, Daniela Kühn, John Lapinskas, Deryk Osthus

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

4 اقتباسات (Scopus)

ملخص

A packing of a graph G with Hamilton cycles is a set of edge-disjoint Hamilton cycles in G. Such packings have been studied intensively and recent results imply that a largest packing of Hamilton cycles in Gn,p a.a.s. has size ⌊δ(Gn,p)/2⌋. Glebov, Krivelevich and Szabó recently initiated research on the ‘dual’ problem, where one asks for a set of Hamilton cycles covering all edges of G. Our main result states that for (Formula Presented.), a.a.s. the edges of Gn,p can be covered by ⌈Δ (Gn,p)/2⌉ Hamilton cycles. This is clearly optimal and improves an approximate result of Glebov, Krivelevich and Szabó, which holds for p ≥ n−1+ɛ. Our proof is based on a result of Knox, Kühn and Osthus on packing Hamilton cycles in pseudorandom graphs.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)573-596
عدد الصفحات24
دوريةCombinatorica
مستوى الصوت34
رقم الإصدار5
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - أكتوبر 2014
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Optimal covers with Hamilton cycles in random graphs'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا