On the realization space of the cube

Karim Adiprasito, Daniel Kalmanovich, Eran Nevo

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

We prove that the realization space of the d-dimensional cube is contractible. For this we first show that any two realizations are connected by a finite sequence of projective transformations and normal transformations. As an application we use this fact to define an analog of the connected sum construction for cubical d-polytopes, and apply this construction to certain cubical d-polytopes to conclude that the rays spanned by f-vectors of cubical d-polytopes are dense in Adin’s cone. The connectivity result on cubes extends to any product of simplices, and further, it shows the respective realization spaces are contractible.

اللغة الأصليةالإنجليزيّة
رقم المقال80
دوريةSeminaire Lotharingien de Combinatoire
رقم الإصدار84
حالة النشرنُشِر - 2020
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “On the realization space of the cube'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا