ملخص
In 1975 Pippenger and Golumbic proved that any graph on n vertices admits at most 2e(n/k)k induced k-cycles. This bound is larger by a multiplicative factor of 2e than the simple lower bound obtained by a blow-up construction. Pippenger and Golumbic conjectured that the latter lower bound is essentially tight. In the present paper we establish a better upper bound of (128e/81)⋅(n/k)k. This constitutes the first progress towards proving the aforementioned conjecture since it was posed.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 243-258 |
عدد الصفحات | 16 |
دورية | Journal of Combinatorial Theory. Series B |
مستوى الصوت | 133 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - نوفمبر 2018 |