ملخص
A set S ⊆ V is independent in a graph G = (V, E) if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number α(G) is the cardinality of a maximum independent set, while μ(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a unicyclic graph of order n and n - 1 = α(G) + μ(G), then core (G) coincides with the union of cores of all trees in G - C.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 325-331 |
عدد الصفحات | 7 |
دورية | Ars Mathematica Contemporanea |
مستوى الصوت | 5 |
رقم الإصدار | 2 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2012 |